团队负责人:潘保田
93. Zhang Y, Geng H, Cai S, Pan B. Tan DEM-X preserves the relationship between hilltop curvature and erosion rate in
the Qilian Shan. Journal of Geophysical Research: Earth Surface, 2023, 128(9): e2023JF007118.
92. Pan B, Li X, Hu Z, et al. Channel migration in the northeastern margin of the Tibetan Plateau and its implication
for fluvial response to the interaction between rapid tectonic activity, climatic fluctuation and human influence.
Quaternary Science Reviews, 2023, 310: 108126.
91. Pan B, Guan W, Shi M, et al. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern
Tibetan Plateau. Environmental Research Letters, 2022, 17(11): 114009.
90. Guan W, Cao B, Pan B, et al. Updated surge-type glacier inventory in the West Kunlun Mountains, Tibetan Plateau,
and implications for glacier change. Journal of Geophysical Research: Earth Surface, 2022, 127(1): e2021JF006369.
89. Tian L, Zhang B, Chen S, Wang X, Ma X, Pan B. Large‐Scale Afforestation Enhances Precipitation by Intensifying the
Atmospheric Water Cycle Over the Chinese Loess Plateau. Journal of Geophysical Research: Atmospheres, 2022, 127
(16): e2022JD036738.
88. Wen Z, Chen D, Guo L, Pan B, Hu X, Li Q, Ji X, Jiaming Yang. Response of terrace deposit thickness to climate
change and tectonic deformation: An example of the Liyuan River in the Northeast Tibetan Plateau. Terra Nova,
2022, 34(1): 37-46.
87. Geng, H., Cai, S., Lü, H., Pan, B. (2022). How can a youthful mountain survive in a foreland setting?-Constraining
the uplift threshold rate by numerical simulation. Science bulletin, 67 12, 1233-1235.
86. Pan B, Guan W, Shi M, et al. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern
Tibetan Plateau. Environmental Research Letters, 2022, 17(11): 114009.
85. Pan B, Zhao Q, Hu X, et al. Uplift and Expansion of the North Qilian Shan Recorded by Detrital Fission Tracks in
the Jiudong Basin, NW China. Frontiers in Earth Science, 2022, 9: 826104.
84. Dong Z, Pan B, Hu Z, et al. Evaluation of the Fluvial Response to Tectonic Uplift From Grain-Size Distribution in
Riverbed Gravels at the Northeastern Margin of the Tibetan Plateau. Continental Basin and Orogenic Processes:
Tectonic Deformation and Associated Landscape and Environmental Evolution, 2022, 10: 824368.
83. Pan B, Cai S, Geng H. Numerical simulation of landscape evolution and mountain uplift history constrain—A case
study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau. Science China Earth
Sciences, 2021, 64: 412-424.
82. Hu, X., Cao, X., Li, T., Mao, J., Zhang, J., He, X., Zhang, Y. n., and Pan, B., 2021, Late Quaternary Fault Slip
Rate Within the Qilian Orogen, Insight Into the Deformation Kinematics for the NE Tibetan Plateau: Tectonics, v.
40, no. 5, p. e2020TC006586.
81. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., and Pan, B., 2021, Millennial Resolution Late Miocene
Northern China Precipitation Record Spanning Astronomical Analogue Interval to the Future: Geophysical Research
Letters, v. 48, no. 15, p. e2021GL093942.
80. Cao X, Hu X, Pan B, et al. Using fluvial terraces as distributed deformation offset markers: Implications for
deformation kinematics of the North Qilian Shan Fault. Geomorphology, 2021, 386: 107750.
79. Cao, B.; Guan, W.; Li, K.; Wen, Z.; Han, H.; Pan, B. Area and Mass Changes of Glaciers in the West Kunlun Mountains
Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sens. 2020, 12,
2632.
78. Hu X, Chen D, Pan B, et al. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of
the Qilian Shan since 7 Ma. GSA Bulletin, 2019, 131(9-10): 1744-1760.
77. Hu, Z., Li, M., Dong, Z., Guo, L., Bridgland, D., Pan, B., Li, X., and Liu, X., 2019, Fluvial entrenchment and
integration of the Sanmen Gorge, the Lower Yellow River: Global and Planetary Change, v. 178, p. 129-138.
76. Cao X, Hu X, Pan B, et al. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE
Tibetan Plateau. Tectonophysics, 2019, 755: 35-46.
75. Cao B, Pan B, Wen Z, et al. Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote
sensing data and modeling. Journal of Hydrology, 2019, 578: 124010.
74. Cao B, Pan B, Guan W, et al. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the an
alysis of multi-temporal DEMs from 1966 to 2015. Journal of Glaciology, 2019, 65(251): 366-375.
73. Li Q, Pan B, Gao H, et al. Differential rock uplift along the northeastern margin of the Tibetan Plateau inferred
from bedrock channel longitudinal profiles. Journal of Asian Earth Sciences, 2019, 169: 182-198.
72. Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a
result of fluvial entrenchment. Quaternary Science Reviews, 2017, 166: 324-338.
71. Gao, H., Li, Z., Liu, X., Pan, B., Wu, Y., and Liu, F., 2017, Fluvial terraces and their implications for Weihe
River valley evolution in the Sanyangchuan Basin: Science China Earth Sciences, v. 60, no. 3, p. 413-427.
70. Cao B, Pan B, Cai M, et al. An investigation on changes in glacier mass balance and hypsometry for a small
mountainous glacier in the northeastern Tibetan Plateau. Journal of Mountain Science, 2017, 14(8): 1624-1632.
69. Hu Z, Pan B, Guo L, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge
during the past 1.2 Ma as a result of tectonic extension. Quaternary Science Reviews, 2016, 133: 1-14.
68. Pan B, Pang H, Gao H, et al. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess
Plateau. Journal of Asian Earth Sciences, 2016, 127: 1-11.
67. Pan B, Chen D, Hu X, et al. Drainage evolution of the Heihe River in western Hexi Corridor, China, derived from
sedimentary and magnetostratigraphic results. Quaternary Science Reviews, 2016, 150: 250-263.
66. Pan B, Pang H, Zhang D, et al. Sediment grain-size characteristics and its source implication in the Ningxia-Inner
Mongolia sections on the upper reaches of the Yellow River. Geomorphology, 2015, 246: 255-262.
65. Pan B, Li Q, Hu X, et al. Bedrock channels response to differential rock uplift in eastern Qilian Mountain along
the northeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 2015, 100: 1-19.
64. Zhang G, Pan B, Cao B, et al. Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers'
ablation region, Gongga Mountains, China. Quaternary International, 2015, 371: 49-57.
63. Pan B, Guan Q, Liu Z, et al. Analysis of channel evolution characteristics in the Hobq Desert reach of the Yellow
River (1962–2000). Global and Planetary Change, 2015, 135: 148-158.
62. Geng H, Pan B, Milledge D G, et al. Quantifying sheet wash erosion rates in a mountainous semi‐arid basin using
environmental radionuclides and a stream power model.Earth surface processes and landforms,2015,40(13):1814-18 26.61. Cao B, Pan B, Wang J, et al. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan
river source, eastern Qilian Mountains, China. Quaternary Research, 2014, 81(3): 531-537.
60. Pan B, Guan Q, Gao H, et al. The origin and sources of loess‐like sediment in the Jinsha River Valley, SW China.
Boreas, 2014, 43(1): 121-131.
59. Pan B, Hu X, Gao H, et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan
Mountain, China. Geomorphology, 2013, 184: 84-97.
58. Pan B, Qingyang L, Xiaofei H, et al. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan,
north-eastern margin of the Tibetan Plateau: evidence from apatite fission‐track analysis. Terra Nova, 2013,
25(6): 431-438.
57. Guan Q, Pan B, Yang J, et al. The processes and mechanisms of severe sandstorm development in the eastern Hexi
Corridor China, during the Last Glacial period. Journal of Asian Earth Sciences, 2013, 62: 769-775.
56. Pan B, Hu Z, Wang J, et al. The approximate age of the planation surface and the incision of the Yellow River.
Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356: 54-61.
55. Pan B, Cao B, Wang J, et al. Glacier variations in response to climate change from 1972 to 2007 in the western
Lenglongling mountains, northeastern Tibetan Plateau. Journal of Glaciology, 2012, 58(211): 879-888.
54. Pan B, Zhang G L, Wang J, et al. Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern
margin of the Qinghai-Tibetan Plateau and their climatic forcing. The Cryosphere, 2012, 6(5): 1087-1101.
53. Pan B, Hu Z, Wang J, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau,
China:Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift
and incision by the Yellow River. Geomorphology, 2011, 125(1): 225-238.
52. Qingyu G, Pan B, Na L, et al. Timing and significance of the initiation of present day deserts in the northeastern
Hexi Corridor, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1-2): 70-74.
51. Qingyu G, Pan B, Na L, et al. A warming interval during the MIS 5a/4 transition in two high-resolution loess
sections from China. Journal of Asian Earth Sciences, 2010, 38(6): 255-261.
50. Yu G Q, Pan B, Na L, et al. Pattern of abrupt climatic fluctuation in the East Asian Monsoon during the Last
Glacial: Evidence from Chinese loess records. Comptes Rendus Geoscience, 2010, 342(3): 189-196.
49. Pan B, Geng H, Hu X, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains,
NW China. Earth and Planetary Science Letters, 2010, 292(1-2): 148-157.
48. 高阳,蔡顺,潘保田,熊巨华.地貌学领域自然科学基金项目申请资助、研究范式与启示.科学通报
47. 洪洋,耿豪鹏,潘保田.寒冻风化控制的祁连山风化碎屑的空间分布.冰川冻土,2022,44(04):1347-1356.
46. 潘保田,郭明宙,乔振峰.创新高等理科教育 提高人才培养能力.高等理科教育,2021(05):1-7.
45. 潘保田,曹泊,管伟瑾.2010—2020年祁连山东段冷龙岭宁缠河1号冰川变化综合观测研究.冰川冻土,2021,43(03):864-873.
44. 秦大河,姚檀栋,周尚哲,陈发虎,潘保田,康世昌.李吉均先生纪念专刊·编者按.冰川冻土,2021,43(03):681-682.
43. 潘保田,胡振波.黄河中游响应气候变化和地表相对抬升发育阶地研究.冰川冻土,2021,43(03):853-863.
42. 樊云龙,潘保田,胡振波,任大银,陈起伟,刘芬良,李宗盟.云贵高原北盘江流域构造地貌特征分析.地球科学进展,2018,33(07):751-76
1.
41. 高红山,李宗盟,刘小丰,潘保田,吴雅婕,刘芬良.三阳川盆地渭河阶地发育与河谷地貌演化.中国科学:地球科学,2017,47(02):191-20
4.
40. 潘保田.完善治理结构 加快现代大学制度建设步伐.世界教育信息,2014,27(01):69-70.
39. 吉亚鹏,高红山,潘保田,李宗盟,管东升,杜功元.渭河上游流域河长坡降指标SL参数与Hack剖面的新构造意义.兰州大学学报(自然科
学版),2011,47(04):1-6.
38. 曹泊,潘保田,高红山,姜少飞,温煜华,上官冬辉.1972-2007年祁连山东段冷龙岭现代冰川变化研究.冰川冻土,2010,32(02):242-248.
37. 耿豪鹏,潘保田,王超,黄波.基于GIS与USLE的榆中县土壤侵蚀.兰州大学学报(自然科学版),2009,45(06):8-13.
36. 李琼, 潘保田, 程维明. 基于RS与GIS的1:100万数字地貌制图方法——以兰州幅(J—48)为例. 兰州大学学报:自然科学版, 2009
(5):7.
35. 管清玉,潘保田,徐树建,邬光剑,李娜,赵明,徐先英,潘俊斌.腾格里沙漠南部(河西走廊东段)沙尘暴代用指标初探.自然科学进展,
2009,19(01):69-74.
34. 刘锋,潘保田,苏怀.兰州地区黄河第五级小沙沟阶地古地磁年代研究.中国沙漠,2008(05):821-826.
33. 胡小飞,潘保田.磷灰石(U-Th)/He热年代学方法及其在地貌演化研究中的应用.原子能科学技术,2008(07):662-664.
32. 潘保田,李万里,徐鹏彬.以科技创新提升高校科研水平——兰州大学科研实践的思考.研究与发展管理,2008(02):118-121.
31. 褚娜娜,潘保田,王均平,胡振波,苏怀,周天,胡小飞.汾渭盆地黄土剖面0.9Ma前后的粒度突变及其环境意义.中国沙漠,2008(01):50-
56.
30. 潘保田,刘小丰,高红山,王勇,李吉均.渭河上游陇西段河流阶地的形成时代及其成因.自然科学进展,2007(08):1063-1068.
29. 刘小丰,潘保田,高红山,王勇,张慧,王均平.渭河河流沉积物对气候变化的响应分析.干旱区资源与环境,2007(05):6-9.
28. 刘小丰,潘保田,高红山,王勇,王均平,张慧,胡春生.渭河L9时期(0.87~0.94Ma)古洪水事件的特征研究.干旱区地理,2007(02):
247-250.
27. 潘保田,苏怀,刘小丰,胡小飞,周天,胡春生,李吉均.兰州东盆地最近1.2Ma的黄河阶地序列与形成原因.第四纪研究,2007(02):
172-180.
26. 李琼,潘保田,高红山,徐树建.腾格里沙漠南缘末次冰盛期以来沙漠演化与气候变化.中国沙漠,2006(06):875-879.
25. 潘保田,苏怀,胡春生,胡小飞,周天,李吉均.兰州地区1.0Ma黄河阶地的发现和0.8Ma阶地形成时代的重新厘定.自然科学进展,2006
(11):1411-1418.
24. 潘保田,王均平,高红山,陈莹莹,李吉均,刘小丰.从三门峡黄河阶地的年代看黄河何时东流入海.自然科学进展,2005(06):700-705.
23. 高红山,潘保田,邬光剑,李吉均,李炳元,Douglas Burbank,业渝光.祁连山东段河流阶地的形成时代与机制探讨.地理科学,2005(02):
197-202.
22. 高红山,潘保田,李吉均,邬光剑,李炳元,业渝光.祁连山东段金塔河流域层状地貌时代与成因探讨.山地学报,2005(02):129-135.
21. 潘保田,王均平,高红山,管清玉,王勇,苏怀,李炳元,李吉均.河南扣马黄河最高级阶地古地磁年代及其对黄河贯通时代的指示.科学通报,2005(03):255-261.
20. 潘保田, 高红山, 李炳元,等. 青藏高原层状地貌与高原隆升. 第四纪研究, 2004.
19. 潘保田,高红山,李吉均.关于夷平面的科学问题——兼论青藏高原夷平面.地理科学,2002(05):520-526.
18. 潘保田,邬光剑,王义祥,刘志刚,管清玉.祁连山东段沙沟河阶地的年代与成因.科学通报,2000(24):2669-2675.
17. 潘保田,李吉均,李炳元.青藏高原地面抬升证据讨论.兰州大学学报,2000(04):100-111.
16. 潘保田.代表我国冰冻圈地貌与沉积研究跃上新台阶的一部力作──《中天山冰冻圈地貌过程与沉积特征》评介.冰川冻土,2000
(01):96.
15. 潘保田,王建民.末次间冰期以来青藏高原东部季风演化的黄土沉积记录.第四纪研究,1999(04):330-335.
14. 潘保田,陈发虎.青藏高原东北部15万年来的多年冻土演化.冰川冻土,1997(02):30-38.
13. 潘保田,邬光剑.青藏高原东北部最近两次冰期降温幅度的初步估算.干旱区地理,1997(02):17-24.
12. 潘保田,李吉均,曹继秀,陈发虎.化隆盆地地貌演化与黄河发育研究.山地研究,1996(03):153-158.
11. 潘保田,李吉均.青藏高原:全球气候变化的驱动机与放大器──Ⅲ.青藏高原隆起对气候变化的影响.兰州大学学报,1996(01):108-
115.
10. 潘保田,石生仁,朱俊杰.河西经济带建设在大西北开发中的地位与作用.干旱区地理,1996(01):32-37.
9. 潘保田,李吉均,朱俊杰,曹继秀.青藏高原:全球气候变化的驱动机与放大器──Ⅱ.青藏高原隆起的基本过程.兰州大学学报,1995
(04):160-167.
8. 潘保田,李吉均,陈发虎.青藏高原:全球气候变化的驱动机与放大器──Ⅰ 新生代气候变化的基本特征.兰州大学学报,1995(03):
120-128.
7. 王乃昂,潘保田.我国高等地理教育的发展和问题.高等理科教育,1995(03):18-23.
6. 潘保田.贵德盆地地貌演化与黄河上游发育研究.干旱区地理,1994(03):43-50.
5. 潘保田,李吉均,曹继秀.黄河中游的地貌与地文期问题.兰州大学学报,1994(01):115-123.
4. 潘保田,李吉均,周尚哲.青藏高原倒数第二次冰期冰楔的发现及其意义.科学通报,1992(17):1599-1602.
3. 潘保田,徐叔鹰,陈发虎,曹继秀,张宇田.青海高原东部三万年来自然环境变迁的序列与幅度探讨.干旱区地理,1989(02):14-21.
2. 潘保田,徐叔鹰.青海高原东部晚第四纪自然环境演化探讨.科学通报,1989(07):534-536.
1. 潘保田.陇西黄土高原农业发展方向初探.地域研究与开发,1988(02):27-32.
团队骨干成员:聂军胜
78. Liu, X., Nie, J., Zhou, B. and Zhang, Z., 2023. East Asian summer monsoon variations across the Miocene−Pliocene
boundary recorded by sediments from the Guide Basin, northeastern Tibetan Plateau. GSA Bulletin.
77. Li, M., Nie, J., Li, Z., Pullen, A., Abell, J.T., Zhang, H., McMechen, C.A. and Pan, B., 2023. A middle Pleistocene
to Holocene perspective on sediment sources for the Tengger Desert, China. CATENA, 228: 107119.
76. Yang, J., Nie, J., Zhang, H., Rasmeni, S.K., Ncube, L., van Niekerk, H.J., Zhao, B. and Hu, X., 2023. Sr-Nd-Hf
isotopic constraints on the provenance of the modern Zambezi River sand sediments, southern Africa.Basin Research,
35(3): 1053-1070.
75. Li, S., Nie, J., Ren, X., Xing, L., Tong, F. and Xiao, Y., 2023. Increased primary mineral dissolution control on
a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum.Geochimica et Cosmochimica
Acta, 348: 41-53.
74. Peng, W., Zhang, H., Pullen, A., Li, M., Pan, B., Xiao, W. and Nie, J., 2023. Stepwise increased spatial provenance
contrast on the Chinese Loess Plateau over late Miocene-Pleistocene. Communications Earth & Environment, 4(1): 60.
73. Nie, J., Wang, W., Heermance, R., Gao, P., Xing, L., Zhang, X., Zhang, R., Garzione, C. and Xiao, W., 2022. Late
Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening. Nature
Communications, 13(1): 3977.
72. Wang, X., Nie, J., Stevens, T., Zhang, H. and Xiao, W., 2022. Resolving conflicting models of late Miocene East
Asian summer monsoon intensity recorded in Red Clay deposits on the Chinese Loess Plateau. Earth-Science Reviews:
104200.
71. Zhang, H., Li, M., Peng, W., Zhang, Z. and Nie, J., 2022. No major temporal provenance variation on the Chinese
Loess Plateau since the late Miocene — insight from stable heavy mineral ratios. Geosystems and Geoenvironment,
1(2): 100022.
70. Guo, B., Nie, J., Li, J., Xiao, W., Pan, F. Expansion/shrinkage history of the Paratethys Sea during the Eocene:
New insights from eolian Red Clay records in the Altyn Mountains, northern China. Frontiers in Earth Science, 10,
2022.
69. Guo, B., Nie, J., Stevens, T., Buylaert, J.-P., Peng, T., Xiao, W., Pan, B., Fang, X. Dominant precessional forcing
of the East Asian summer monsoon since 260 ka. Geology, 50(12): 1372-1376, 2022.
68. Peng, F., Nie, J., Stevens, T., Pan, B. Decoupled Chinese Loess Plateau Dust Deposition and Asian Aridification at
Millennial and Tens of Millennial Timescales. Geophysical Research Letters, 49(20): e2022GL099338, 2022.
67. Cheng, F., Garzione, C., Li, X., Salzmann, U., Schwarz, F., Haywood, A.M., Tindall, J., Nie, J., Li, L., Wang, L.,
Abbott, B.W., Elliott, B., Liu, W., Upadhyay, D., Arnold, A., Tripati, A. Alpine permafrost could account for a
quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 13(1): 1329,
2022.
66. Wang, X., Nie, J., Saylor, J.E. Anti-Phase Strengthening of the South and East Asian Summer Monsoons During the
Early Pliocene Driven by Southern Hemisphere Ice Volume. Paleoceanography and Paleoclimatology, 36(5):
e2021PA004211, 2021.
65. Wang, H., Gao, P., Yang, R., Nie, J., Cao, B., Zhou, A., Pan, B., Chen, L., Peng, T. Correlation Between brGDGTs
Distribution and Elevation From the Eastern Qilian Shan. Frontiers in Earth Science, 10, 2022.
64. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., Pan, B. Millennial Resolution Late Miocene Northern China
Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 48(15):
e2021GL093942, 2021.
63. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., Pan, B. Millennial Resolution Late Miocene Northern China
Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 48(15):
e2021GL093942, 2021.
62. Liu, F., Danišík, M., Zheng, D., Gallagher, K., Nie, J. Distinguishing tectonic versus climatic forcing on
landscape evolution: An example from SE Tibetan Plateau. GSA Bulletin, 133(1-2): 233-242, 2020.
61. Luo, Z., Nie, J., Moe, A.E., Heermance, R.V., Garzione, C., Herbert, T.D., Wang, Z., Li, H., Zhang, R., Zhao, X., S
alzmann, U. Joint insolation and ice sheet/CO2 forcing on northern China precipitation during Pliocene warmth.
Science Bulletin, 66(4): 319-322, 2021.
60. Yang, J., Nie, J., Garzanti, E., Limonta, M., Andò, S., Vermeesch, P., Zhang, H., Hu, X., Wang, Z., Zhao, B.,
Ncube, L.,Stevens, T., Li, M., Li, H., Chen,T.,Miao,Y., Pan, B.Climatic Forcing of Plio-Pleistocene Formation of
the Modern Limpopo River, South Africa. Geophysical Research Letters, 48(14): e2021GL093887, 2021.
59. Zhang, H., Nie, J., Liu, X., Pullen, A., Li, G., Peng, W., Zhang, H. Spatially variable provenance of the Chinese
Loess Plateau. Geology, 49(10): 1155-1159, 2021.
58. Ji, S., Ma, L., Nie, J., Chen, S., Sun, Y., Breecker, D.O. Quantifying soil-respired CO2 on the Chinese Loess
Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110158, 2021.
57. Liu, C., Nie, J., Li, Z., Qiao, Q., Abell, J.T., Wang, F., Xiao, W. Eccentricity forcing of East Asian monsoonal
systems over the past 3 million years. Proceedings of the National Academy of Sciences, 118(43): e2107055118,2021.
56. Ren, X., Nie, J., Saylor, J.E., Wang, X., Liu, F., Horton, B.K.Temperature Control on Silicate Weathering Intensity
and Evolution of the Neogene East Asian Summer Monsoon. Geophysical Research Letters, 47(15): e2020GL088808, 2020.
55. Nie, J., Ren, X., Saylor, J.E., Su, Q., Horton, B.K., Bush, M.A., Chen,W.,Pfaff, K. Magnetic polarity stratigraphy,
provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. GSA Bulletin.
132(1-2): 310-320, 2019.
54. Ren, X., Nie, J., Saylor, J.E., Li, H., Bush, M.A., Horton, B.K. Provenance Control on Chemical Weathering Index of
Fluvio-Lacustrine Sediments: Evidence From the Qaidam Basin, NE Tibetan Plateau. Geochemistry, Geophysics,
Geosystems, 20(7): 3216-3224, 2019.
53. Su, Q., Nie, J., Luo, Z., Li, M., Heermance, R., Garzione, C. Detection of Strong Precession Cycles from the Late
Pliocene Sedimentary Records of Northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 20(8): 3901-
3912, 2019.
52. Su, Q., Nie, J., Meng, Q., Heermance, R., Gong, L., Luo, Z., Wang, Z., Zhang, R., Garzione, C. Central Asian Drying
at 3.3 Ma Linked to Tropical Forcing? Geophysical Research Letters, 46(17-18): 10561-10567, 2019.
51. Wang, Z., Nie, J., Wang, J., Zhang, H., Peng, W., Garzanti, E., Hu, X., Stevens, T., Pfaff, K.,Pan, B. Testing
Contrasting Models of the Formation of the Upper Yellow River Using Heavy-Mineral Data From the Yinchuan Basin
Drill Cores. Geophysical Research Letters, 46(17-18): 10338-10345, 2019.
50. Gao, P., Nie, J., Li, M., Li, P. Confirmation of a Late Miocene Subchron C4n.2n-1r From the Eastern Qaidam Basin in
the NE Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 124(12): 12354-12365, 2019.
49. Nie, J., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C., Wang, W., Stockli, D., Hu, X., Wang, Z., Wang, Y.,
Stevens, T., Danisik, M., Liu, S. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal
precipitation. Nature Geoscience, 11: 944–948, 2018.
48. Nie, J., Garzione, C., Su, Q.,Liu, Q.,Zhang, R.,Heslop, D.,Necula, C.,Zhang, S., Song, Y.,Luo,Z., Dominant 100,000-
year precipitation cyclicity in a Late Miocene lake from northeast Tibet.Science Advances,3: e1600762, 2018.
47. Ji, S., Nie, J., Lechler, A., Huntington, K.W., Heitmann, E.O., Breecker, D.O. A symmetrical CO2 peak and
asymmetrical climate change during the middle Miocene. Earth and Planetary Science Letters, 499: 134-144, 2018.
46. Peng, W., Nie, J., Wang, Z., Qiang, X., Garzanti, E., Pfaff, K., Song, Y.,Stevens, T. A major change in
precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. Journal of Asian Earth
Sciences, 155: 134-138, 2018.
45. Peng, W.B., Wang, Z., Song, Y.G., Pfaff, K., Luo, Z., Nie, J., Chen, W.H, A comparison of heavy mineral assemblage
between the loess and the Red Clay sequences on the Chinese Loess Plateau. Aeolian Research, 21: 87-91, 2016.
44. Zhang, R., Necula, C., Heslop, D., Nie, J., Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-
red clay sequence. Scientific Reports, 6: 29515., 2016.
43. Nie, J., T. Stevens, M. Rittner, D. Stockli, E. Garzanti, M. Limonta, A. Bird, S. Ando, P. Vermeesch, J. Saylor, H.
Lu, D. Breecker, X. Hu, S. Liu, A. Resentini, G. Vezzoli, W. Peng, A. Carter, S. Ji, and B. Pan, Loess Plateau
storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6: 8511,2015.
42. Peng, W., Nie, J., Song, Y., Liu, S and Ji, S., Tracing provenance of Chinese loess and red clay based on the
zircon U-Pb dating technique: a review. Marine Geology Letters, 2: 1-9, 2014.
41. Nie, J., R. Zhang, C. Necula, D. Heslop, Q. Liu, L. Gong, and S. Banerjee, Late Miocene-early Pleistocene
paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophysical Research Letters,
41: 2163–2168, 2014.
40. Nie, J., T. Stevens, Y. Song, J. King, R. Zhang, S. Ji, L. Gong, and D. Cares, Pacific freshening drives Pliocene
cooling and Asian monsoon intensification. Scientific Reports, 4: 5474, 2014.
39. Nie, J., W. Peng, A. Möller, Y. Song, D.F. Stockli, T. Stevens, B.K. Horton, S. Liu, A. Bird, J. Oalmann, H. Gong,
and X. Fang, Provenance of the upper Miocene-Pliocene Red Clay deposits of the Chinese loess plateau. Earth and
Planetary Science Letters, 407: 35-47, 2014.
38. Nie, J. and W. Peng, Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and
interglacial paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71-75, 2014.
37. Saylor, J.E., J.N. Knowles, B.K. Horton, Nie, J and A. Mora, Mixing of source populations recorded in detrital
zircon U-Pb age spectra of modern river sands. The Journal of Geology, 121(1): 17-33, 2013.
36. Nie, J., Y. Song, J.W. King, R. Zhang, and X. Fang, Six million years of magnetic grain-size records reveal that
temperature and precipitation were decoupled on the Chinese Loess Plateau during ~4.5-2.6 Ma. Quaternary Research,
79(3): 465-470, 2013.
35. Nie, J., W. Peng, K. Pfaff, A. Möller, E. Garzanti, S. Andò, T. Stevens, A. Bird, H. Chang, Y. Song, S. Liu, and S.
Ji, Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography,
Palaeoclimatology, Palaeoecology, 381-382: 110-118, 2013.
34. Nie, J., M. Jackson, J. King, and X. Fang, Characterizing the superparamagnetic grain distribution of Chinese red-
clay sequences by thermal fluctuation tomography. Global and Planetary Change, 110: 364-367, 2013.
33. Ji, S., Peng, T., Nie, J., and Peng, W. Quantitative paleotemperature reconstructions of the Chinese Loess
Plateau: A review. Marine Geology and Quaternary Geology, 33: 151-158, 2013.
32. Nie, J., B.K. Horton, J.E. Saylor, A. Mora, M. Mange, C.N. Garzione, A. Basu, C.J. Moreno, V. Caballero, and M.
Parra, Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd
isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth Science
Reviews, 110(1-4): 111-126, 2012.
31. Nie, J., J. Zan, and Y. Song, Recent advances in red clay environmental magnetism on the Chinese Loess Plateau.
Quaternary Sciences, 32: 576-587, 2012.
30. Saylor, J.E., B.K. Horton, J. Nie, J. Corredor, and A. Mora, Evaluating foreland basin partitioning in the
northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 23(4):
377-402, 2011.
29. Nie, J., Coupled 100-kyr cycles between 3 and 1 Ma in terrestrial and marine paleoclimatic records. Geochemistry,
Geophysics, Geosystems, 12: Q10Z32.
28. Nie, J., Y. Song, J.W. King, X. Fang, and C. Heil, HIRM variations in the Chinese red-clay sequence: Insights into
pedogenesis in the dust source area. Journal of Asian Earth Sciences, 38: 96-104, 2010.
27. Nie, J., Y. Song, J.W. King, and R. Egli, Consistent grain size distribution of pedogenic maghemite of surface
soils and Miocene loessic soils on the Chinese Loess Plateau. Journal of Quaternary Science, 25: 261-266, 2010.
26. Nie, J., B.K. Horton, A. Mora, J.E. Saylor, T.B. Housh, J. Rubiano, and J. Naranjo, Tracking exhumation of Andean
ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38: 451-454, 2010.
25. Nie, J., J.W. King, and X. Fang, Tibetan uplift intensified the 400 k.y. signal in paleoclimate records at 4 Ma.
Geological Society of America Bulletin, 120(9-10): 1338-1344, 2008.
24. Nie, J., J. King, Z. Liu, S. Clemens, W. Prell, and X. Fang, Surface-water freshening: A cause for the onset of
North Pacific stratification from 2.75 Ma onward? Global and Planetary Change, 64(1-2): 49-52, 2008.
23. Nie, J., J. King, M. Jackson, X. Fang, and Y. Song, AC magnetic susceptibility studies of the Chinese red-clay
sediments between 4.8-4.1 Ma and their paleoceanographic and paleoclimatic implications. Journal of Geophysical
Research, 113: B10106, 2008.
22. Nie, J., J. King, and X. Fang, Late Pliocene-early Pleistocene 100-ka problem. Geophysical Research Letters, 35
(21): L21606,2008.
21. Nie, J., J. King, and X. Fang, The correlation between the magnetic susceptibility record of the Chinese aeolian
sequences and the marine benthic oxygen isotope record Geochemistry, Geophysics, Geosystems, 9: Q12026, 2008.
20. Nie, J., J. King, and X. Fang, Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay
sequence on the Chinese Loess Plateau. Geophysical Research Letters, 35: L03703.
19. Nie, J., J. King, and X. Fang, Enhancement mechanisms of magnetic susceptibility in the Chinese Red-Clay sequence.
Geophysical Research Letters, 34: L19705.
18. Nie, J. Mapping pedogenic grain size of the Chinese red-clay sediments using ac magnetic susceptibility and thermal
fluctuation tomography. IRM Quarterly, 17: 2, 2007.
17. Nie, J., C. Song, X. Fang, X. Xu, and D. Sun, Paleomagnetic constraint on the Pleistocene appearance of the Yellow
River in the Guide Basin of the NE Tibetan Plateau and its geomorphologic implications. Marine Geology and
Quaternary Geology, 23: 59-64, 2003.
16. 聂军胜,耿豪鹏,潘保田等.兰州大学地学类专业外语多元化教学模式改革研究.高等理科教育,2023,(02):
15. 季顺川,聂军胜,马龙,文静雅,安玉英,范德仙,聂菊敏.定量重建黄土高原末次间冰期土壤呼吸CO_2浓度.第四纪研究,2023,43(02):33
6-344.
14. 邓欣宜,聂军胜,任雪萍.晚中新世柴达木盆地低偏心率时期倾角驱动的干湿变化.海洋地质与第四纪地质,2022,42(06):193-199.
13. 苏庆达,聂军胜,李祥忠,高鹏.柴达木盆地中新世-早上新世有机碳同位素记录和植被演化历史.第四纪研究,2022,42(04):948-957.
12. 刘方斌,聂军胜.基于Pecube模型重建青藏高原东南缘临沧花岗岩地区新生代阶段性地貌演化.第四纪研究,2022,42(03):637-649.
11. 王钊,聂军胜,彭文彬,张浩博,李峁潼.银川盆地晚上新世物质来源及其对黄河上游形成年代的约束.沉积学报,2022,40(04):924-930.
10. 罗增,聂军胜.早始新世气候适宜期形成机制探讨.地球环境学报,2021,12(03):233-242.
9. 刘方斌,聂军胜,郑德文,庞建章.青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例.地球科学进展,2021,36
(04):421-441.
8. 刘成英,高鹏,毛鹏宇,聂军胜.新生代地磁漂移研究若干进展.海洋地质与第四纪地质,2019,39(02):1-13.
7. 王晓雪, 聂军胜, JoelSaylor, 张蕊. 札达盆地晚中新世河湖相沉积物环境磁学特征与印度季风演化. 第四纪研究, 2018, 38(5):
1094-1100.
6. 聂军胜, 李曼. 柴达木盆地晚中新世河湖相沉积物粒度组成及其古环境意义. 第四纪研究, 2017, 37(5): 1017-1026.
5. 苏庆达, 聂军胜, Joel E. Saylor, Brian K. Horton, Meredith A. Bush, 陈文汉. 柴达木盆地大红沟剖面新生代地层磁组构特征
及构造意义. 第四纪研究, 2016, 36(4): 859-869.
4. 彭文彬,聂军胜,宋友桂,刘善品,季顺川.用锆石U/Pb测年技术追踪黄土红黏土物源:进展与展望.海洋地质前沿,2014,30(02):1-9.
3. 季顺川,彭廷江,聂军胜,彭文彬.黄土高原微生物膜类脂物和碳酸盐二元同位素重建古温度的研究进展.海洋地质与第四纪地质,2013,
33(03):151-158.
2. 聂军胜,昝金波,宋友桂.中国黄土高原红粘土环境磁学研究进展.第四纪研究,2012,32(04):576-587.
1. 聂军胜,宋春晖,方小敏,徐先海,孙东.贵德盆地黄河出现的古地磁年代及其意义.海洋地质与第四纪地质,2003(02):59-64.
团队骨干成员:耿豪鹏
22. Zhang Y, Geng H, Cai S, et al. Tan DEM‐X preserves the relationship between hilltop curvature and erosion rate in
the Qilian Shan. Journal of Geophysical Research: Earth Surface, 2023: e2023JF007118.
21. Geng H, Xu W, Zheng W, et al. A hybrid mechanism for the initiation and expansion of loess caves across the Chinese
Loess Plateau. Land Degradation & Development, 2023.
20. Geng H, Zhang J, Xie R, et al. The constancy of chemical weathering intensity on hillslopes in the arid to semiarid
Qilian Mountains, NE Tibetan Plateau. Science of The Total Environment, 2023, 870: 161946.
19. Geng H, Hong Y, Milledge D G, et al. Frost cracking dictated landslide distribution in response to temperature
change since Last Glacial Maximum across the Eastern Qilian Mountains. Earth Surface Processes and Landforms,
2022, 47(13): 3163-3179.
18. Geng H, Cai S, Lü H, et al. How can a youthful mountain survive in a foreland setting? – Constraining the uplift
threshold rate by numerical simulation. Science Bulletin, 2022, 67(12): 1233-1235.
17. Zhang J, Geng H, Pan B, et al. Coupling of tectonic uplift and climate change as influences on drainage evolution:
A case study at the NE margin of the Tibetan Plateau. CATENA, 2022, 216: 106433.
16. Pan B, Cai S, Geng H. Numerical simulation of landscape evolution and mountain uplift history constrain—A case
study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau. Science China Earth
Sciences, 2021, 64: 412-424.
15. Geng H, Liu R, Zheng W, et al. Interaction between animal burrowing and loess cave formation in the Chinese Loess Plateau. Frontiers in Earth Science, 2021: 1173.
14. Zhang J, Geng H, Pan B, et al. Climatic zonation complicated the lithology controls on the mineralogy and
geochemistry of fluvial sediments in the Heihe River basin, NE Tibetan Plateau. Quaternary International, 2020,
537: 33-47.
13. Cai S, Geng H, Pan B, et al. Topographic controls on the annual runoff coefficient and implications for landscape
evolution across semiarid Qilian Mountains, NE Tibetan Plateau. Journal of Mountain Science, 2020, 17(2): 464-479.
12. Geng H, Pan B, Huang B,et al.The spatial distribution of precipitation and topography in the Qilian Shan Mountains,
northeastern Tibetan Plateau. Geomorphology, 2017, 297: 43-54.
11. Geng H, Pan B, Milledge D G, et al. Quantifying sheet wash erosion rates in a mountainous semi‐arid basin using
environmental radionuclides and a stream power model. Earth surface processes and landforms,2015,40(13):1814-1826.
10. Pan B, Geng H, Hu X, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains,
NW China. Earth and Planetary Science Letters, 2010, 292(1-2): 148-157.
9. 耿豪鹏,蔡顺,吕红华等.年轻山地如何能在前陆盆地形成和保存?(英文).Science Bulletin,2022,67(12):1233-1235.
8. 耿豪鹏,高红山,蔡顺.地貌学课程中的思政教育元素——基于研究简史和研究范式的分析.高等理科教育,2021(05):86-91.
7. 潘保田,蔡顺,耿豪鹏.山体隆升历史与地貌演化过程的数值模拟约束——以青藏高原东北缘河西走廊中段的周边年轻上升山地为例.
中国科学:地球科学,2021,51(04):523-536.
6. 郑炜珊, 耿豪鹏, 潘保田. 兰州清水村黄土陷穴的侵蚀临界研究. 兰州大学学报(自然科学版), 2020, 56(3):326-332.
5. 郑炜珊, 耿豪鹏, 顾国强,等. 定西于家山黄土洞穴的分布特征与侵蚀临界研究. 水土保持学报, 2020, 34(4):7.
4. 曹喜林,耿豪鹏,潘保田,胡小飞.活动褶皱地区横向河演化与风口形成的研究进展和案例分析.地震地质,2020,42(03):670-687.
3. 蔡顺,耿豪鹏,郑炜珊,潘保田.基于傅里叶变换的谷间距特征信息提取及其影响因素研究.地球信息科学学报,2020,22(03):399-409.
2. 陈立萍,耿豪鹏,张建,赵启明,潘保田.黑河流域基岩回弹值(施密特锤)的空间分布特征及其指示意义.冰川冻土,2019,41(02):364-
373.
1. 耿豪鹏,潘保田,王超,黄波.基于GIS与USLE的榆中县土壤侵蚀.兰州大学学报(自然科学版),2009,45(06):8-13.
团队骨干成员:高红山
20. Li P, Gao H, Yan T, et al. The nature and controls on downstream change of channel sediment along the Shiyang
River, Northwest China. Frontiers in Earth Science, 2023, 11: 1112772.
19. Gao H, Liu F, Yan T, et al. Drainage Density and Its Controlling Factors on the Eastern Margin of the Qinghai-Tibet
Plateau. Frontiers in Earth Science, 2022, 9: 1280.
18. Gao H, Li Z, Liu F, et al. Terrace formation and river valley development along the lower Taohe River in central
China. Geomorphology, 2020, 348: 106885.
17. Liu F, Gao H, Pan B, et al. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-
Yunnan Region, Southwest China. Frontiers of Earth Science, 2019, 13: 55-74.
16. Gao H, Li Z M, Liu X F, et al. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin. Science China Earth Sciences, 2017, 60: 413-427.
15. Gao H, Li Z, Ji Y, et al. Climatic and tectonic controls on strath terraces along the upper Weihe River in central
China. Quaternary Research, 2016, 86(3): 326-334.
14. Gao H, Liu X, Pan B, et al. Stream response to Quaternary tectonic and climatic change: evidence from the upper
Weihe River, central China. Quaternary International, 2008, 186(1): 123-131.
13. 刘芬良,高红山,李宗盟,潘保田,苏怀.金沙江巧家—蒙姑段的阶地发育与河谷地貌演化.地理学报,2020,75(05):1095-1105.
12. 王营,高红山,赵珂梓,李宗盟,刘芬良,潘保田.渭河三阳川盆地最高级阶地的年代厘定及其对河谷发育的指示意义.山地学报,2020,38
(01):1-8.
11. 刘芬良,高红山,李宗盟,潘保田,苏怀.金沙江龙街段晚更新世以来的阶地发育与河谷地貌演化.地球科学进展,2020,35(04):431-440.
10. 刘芬良,高红山,胡小飞,李宗盟,潘保田,王姣姣.金沙江攀枝花至凹嘎段水系河道纵剖面形态特征及其对河谷发育的指示.兰州大学学
报(自然科学版),2019,55(02):149-157.
9. 李富强,高红山,张连科,李宗盟,庞红丽,潘保田.基于粒度参数特征对黄河后套平原段岩芯沉积环境的分析.沉积学报,2019,37(06):12
34-1243.
8. 高红山,李宗盟,刘小丰,潘保田,吴雅婕,刘芬良.三阳川盆地渭河阶地发育与河谷地貌演化.中国科学:地球科学,2017,47(02):191-
204.
7. 高红山,潘保田,李炳元,李琼.地貌学的基本范式及其在教学科研中的作用.地理科学,2015,35(12):1591-1598.
6. 李宗盟,高红山,潘保田,张忱,刘芬良,管东升.贺兰山水系流域数值地貌特征及其构造指示意义.干旱区地理,2012,35(03):422-429.
5. 高红山,潘保田,邬光剑,李吉均,李炳元,业渝光.祁连山东段冲积扇的发育时代及其成因.兰州大学学报,2005(05):6-9.
4. 高红山,潘保田,邬光剑,李吉均,李炳元,Douglas Burbank,业渝光.祁连山东段河流阶地的形成时代与机制探讨.地理科学,2005(02):
197-202.
3. 高红山,潘保田,李吉均,邬光剑,李炳元,业渝光.祁连山东段金塔河流域层状地貌时代与成因探讨.山地学报,2005(02):129-135.
2. 高红山,潘保田,李吉均,隋玉柱.青藏高原隆升过程与环境变化.青岛大学学报(工程技术版),2004(04):40-47.
1. 高红山,潘保田,邬光剑,李吉均,管清玉,王均平,业渝光.祁连山东段剥蚀面与青藏高原隆升.冰川冻土,2004(05):540-544.
团队骨干成员:王杰
18. Chen X J, Wang J, Zou L Y,et al.Ice flux of alpine glaciers controls erosion and landscape in the Nianbaoyeze Shan,
northeastern Tibetan Plateau. Journal of Mountain Science, 2023, 20: 1884–1899.
17. Wang J, Wang W, Cao B, et al. Millennial-scale glacier fluctuations on the southeastern Tibetan Plateau during MIS
2. Earth and Planetary Science Letters, 2023, 601: 117903.
16. Yao P, Wang J, Harbor J M, et al. The relative efficiency and influence of glacial and fluvial erosion on Tibetan
Plateau landscapes. Geomorphology, 2020, 352: 106988.
15. Cui H, Wang J, Yu B, et al. Marine Isotope Stage 3 paleotemperature inferred from reconstructing the Die Shan ice
cap, northeastern Tibetan Plateau. Quaternary Research, 2018, 89(2): 494-504.
14. Wang J, Yao P, Yu B, et al. Controls on spatial variations of glacial erosion in the Qilian Shan, northeastern
Tibetan Plateau. Geomorphology, 2018, 318: 128-138.
13. Wang J, Cui H, Harbor J M, et al. Mid‐MIS3 climate inferred from reconstructing the Dalijia Shan ice cap, north-
eastern Tibetan Plateau. Journal of Quaternary Science, 2015, 30(6): 558-568.
12. Wang J, Kassab C, Harbor J M, et al. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the
Dalijia Shan, northeastern Tibetan Plateau. Quaternary Research, 2013, 79(3): 439-451.
11. Wang J, Pan B T, Zhang G L, et al. Late Quaternary glacial chronology on the eastern slope of Gongga Mountain,
eastern Tibetan Plateau, China. Science China Earth Sciences, 2013, 56: 354-365.
10. Wang J, Zhou S Z, Zhao J D, et al. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern
Pamir, China. Science China Earth Sciences, 2011, 54: 591-602.
9. Shangzhe Z, Wang J, Xu L, et al.Glacial advances in southeastern Tibet during late Quaternary and their implications
for climatic changes. Quaternary International, 2010, 218(1-2): 58-66.
8. 王杰,雷满红,郑利敏.山地冰川冰消后(paraglacial)沉积的粒度与石英颗粒表面特征——以贡嘎山东坡为例.冰川冻土,2022,44
(04):1150-1164.
7. 姚盼,王杰,林文旺,曾兰华,陈仁容.基于Hkr值的北天山冰川侵蚀空间分布特征及其主控因素研究.冰川冻土,2022,44(04):1260-1269.
6. 王潍诚, 王杰. 底部剪切应力影响因素及其在中国西部冰川研究中的取值. 兰州大学学报:自然科学版, 2022, 58(1):9.
5. 崔航,王杰.基于冰川平衡线高度变化的气候重建模型研究.海洋地质与第四纪地质,2013,33(04):17-24.
4. 崔航,王杰.冰川物质平衡线的估算方法.冰川冻土,2013,35(02):345-354.
3. 曹泊,王杰,潘保田,张兴余,崔航.祁连山东段宁缠河1号冰川和水管河4号冰川表面运动速度研究.冰川冻土,2013,35(06):1428-1435.
2. 王杰,潘保田,张国梁,崔航,曹泊,耿豪鹏.贡嘎山东坡中更新世晚期以来冰川作用年代学研究.中国科学:地球科学,2012,42(12):1889-
1900.
1. 王杰,周尚哲,赵井东,郑景雄,郭向中.东帕米尔公格尔山地区第四纪冰川地貌与冰期.中国科学:地球科学,2011,41(03):350-361.
团队骨干成员:胡小飞
21. Hu X, Zhang Y, Guo J, et al. How does climate affect the topography in tectonically active orogens. Earth Surface
Processes and Landforms, 2023, 45(6): 1267-1280.
20. Hu X, Wu J, Wen Z, et al. Fluvial evolution in a growing thrust-fold range of the Yumu Shan, NE Tibetan Plateau.
Earth and Planetary Science Letters, 2022, 594: 117704.
19. Cao X, Hu X, Pan B, et al. Spatiotemporal Variation of Late Quaternary River Incision Along the Heihe River in the
Northeastern Tibetan Plateau, Constrained by Dating Fluvial Terraces. Frontiers in Earth Science, 2022,10: 929599.
18. Cao X, Hu X, Pan B, et al. Using fluvial terraces as distributed deformation offset markers: Implications for
deformation kinematics of the North Qilian Shan Fault. Geomorphology, 2021, 386: 107750.
17. Hu X, Ji X, Cao X, et al. Test on the reliability of the subsurface fault geometry estimated by deformed river
terraces along the Bailang River, north front of the Qilian Shan (North West China). Frontiers in Earth Science,
2021, 9: 665047.
16. Hu X, Cao X, Li T, et al. Late Quaternary fault slip rate within the Qilian Orogen, insight into the deformation
kinematics for the NE Tibetan Plateau. Tectonics, 2021, 40(5): e2020TC006586.
15. Hu X, Chen D, Pan B, et al. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of
the Qilian Shan since 7 Ma. GSA Bulletin, 2019, 131(9-10): 1744-1760.
14. Cao X, Hu X, Pan B, et al. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE
Tibetan Plateau. Tectonophysics, 2019, 755: 35-46.
13. Hu X, Wen Z, Pan B, et al. Constraints on deformation kinematics across the Yumu Shan, NE Tibetan Plateau, based on
fluvial terraces. Global and Planetary Change, 2019, 182: 103023.
12. Hu X, Kirby E, Pan B, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River,
China. Geology, 2011, 39(9): 839-842.
11. Hu X, Pan B T, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices
along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chinese Science Bulletin, 2010, 55:
3205-3214.
10. 张亚男,胡小飞,潘彦菲.北祁连山和东昆仑山的地貌特征对比及其对构造抬升的指示意义.第四纪研究,2022,42(03):809-822.
9. 贺鑫,胡小飞,潘保田.黄河兰州段河谷演化研究与认识.地球科学进展,2020,35(04):404-413.
8. 陈殿宝, 陈进军, 胡小飞, 苏航, 陈颖, 张建. 祁连山北麓梨园河沉积物粒径的变化特征与分析. 第四纪研究, 2018, 38(6): 1336-
1347.
7. 陈苗,胡小飞,王维.走廊南山河流纵剖面高海拔裂点的成因.地理学报,2018,73(09):1702-1713.
6. 温振玲, 胡小飞, 潘保田, 张建, 曹喜林. 金塔南山河流砾石特征指示的青藏高原东北缘地貌演化. 第四纪研究, 2016, 36(4): 907
-916.
5. 胡小飞,潘保田,李琼.基岩河道水力侵蚀模型原理及其最新研究进展.兰州大学学报(自然科学版),2014,50(06):824-831.
4. 胡小飞,潘保田,高红山,胡振波,曹泊,李清洋,耿豪鹏.祁连山东段全新世河流阶地发育及其与气候变化的关系研究.第四纪研究,2013,
33(04):723-736.
3. 胡小飞,潘保田,KIRBY Eirc,李清洋,耿豪鹏,陈吉峰.河道陡峭指数所反映的祁连山北翼抬升速率的东西差异.科学通报,2010,55(23):
2329-2338.
2. 胡小飞,潘保田.磷灰石(U-Th)/He热年代学方法及其在地貌演化研究中的应用.原子能科学技术,2008(07):662-664.
1. 胡小飞,潘保田,苏怀,安春雷,周天.宛川河阶地的年代与下切机制.地理科学,2007(06):808-813.
团队骨干成员:胡振波
11. Pan B, Li X, Hu Z, et al. Channel migration in the northeastern margin of the Tibetan Plateau and its implication
for fluvial response to the interaction between rapid tectonic activity, climatic fluctuation and human influence.
Quaternary Science Reviews, 2023, 310: 108126.
10. Dong, Z., Pan, B., Hu, Z., Mo, Q., Bridgland, D., Li, MH., Li, XH., Yang, YN.,Chen, DB. Evaluation of the Fluvial
Response to Tectonic Uplift From Grain Size Distribution in Riverbed Gravels at the Northeastern Margin of the
Tibetan Plateau. Frontiers in Earth Science, 10: 824368, 2022.
9. Bridgland D R, Westaway R, Hu Z. Basin inversion: A worldwide Late Cenozoic phenomenon. Global and Planetary Change,
2020, 193: 103260.
8. Bridgland D R, Hu Z, Vandenberghe J, et al. Late Cenozoic fluvial history worldwide: a context for the Yellow River
record. Global and planetary change.,2020, 193: 103274.
7. Hu Z, Li M H, Dong Z J, et al. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River.
Global and Planetary Change, 2019, 178: 129-138.
6. Wang J, Hu Z, Pan B, et al.Spatial distribution pattern of channel steepness index as evidence for differential rock
uplift along the eastern Altun Shan on the northern Tibetan Plateau. Global and Planetary Change, 2019,181:102979.
5. Su H, Dong M, Hu Z. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate. Global and
Planetary Change, 2019, 183: 103002.
4. Hu Z, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result
of fluvial entrenchment. Quaternary Science Reviews, 2017, 166: 324-338.
3. Hu Z, Pan B, Guo L, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge
during the past 1.2 Ma as a result of tectonic extension. Quaternary Science Reviews, 2016, 133: 1-14.
2. Hu Z, Pan B, Wang J, et al. Fluvial terrace formation in the eastern Fenwei Basin,China, during the past 1.2 Ma as a
combined archive of tectonics and climate change. Journal of Asian Earth Sciences, 2012, 60: 235-245.
1. 李晓花,胡振波,潘保田,李梦昊,莫钦鸿,董子娟,王军.全新世气候波动与快速构造活动作用下的酒东盆地北大河河道迁移过程研究.
第四纪研究,2021,41(01):1-13.